

Selected Research
Ribeiro, P., Marques, J. A. L., Pordeus, D., Zacarias, L., Leite, C. F., Sobreira-Neto, M. A., Peixoto, A. A., de Oliveira, A., Madeiro, J. P. do V., & Rodrigues, P. M. (2024). Machine learning-based cardiac activity non-linear analysis for discriminating COVID-19 patients with different degrees of severity. Biomedical Signal Processing and Control, 87, 105558. https://doi.org/10.1016/j.bspc.2023.105558
Ribeiro, P., Marques, J. A. L., Pordeus, D., Zacarias, L., Leite, C. F., Sobreira-Neto, M. A., Peixoto, A. A., de Oliveira, A., Madeiro, J. P. do V., & Rodrigues, P. M. (2024). Machine learning-based cardiac activity non-linear analysis for discriminating COVID-19 patients with different degrees of severity. Biomedical Signal Processing and Control, 87, 105558. https://doi.org/10.1016/j.bspc.2023.105558
Ng, S. O. K. M., & Caires, C. S. (2023, November). Empirical Studies on the Conditions of Achieving Interactive Mindfulness Through Virtual Reality Single User Experience in Macao. In International Conference on Entertainment Computing (pp. 329-334). Singapore: Springer Nature Singapore.
Guilherme Cunha Santos, A., Alexandre Lobo Marques, J., Rigo Jr., L., & Paulo Madeiro, J. (2023, November 26). Exploring EEG Signal Features for Predicting Post Cardiac Arrest Prognosis. 2023 Computing in Cardiology Conference. https://doi.org/10.22489/CinC.2023.312
Rodrigues, P. M., Madeiro, J. P., & Marques, J. A. L. (2023). Enhancing Health and Public Health through Machine Learning: Decision Support for Smarter Choices. Bioengineering, 10(7), 792. https://doi.org/10.3390/bioengineering10070792
Ribeiro, P., Marques, J. A. L., & Rodrigues, P. M. (2023). COVID-19 Detection by Means of ECG, Voice, and X-ray Computerized Systems: A Review. Bioengineering, 10(2), 198. https://doi.org/10.3390/bioengineering10020198
Bernardo Gois, F. N., & Lobo Marques, J. A. (2023). Segmentation of CT-Scan Images Using UNet Network for Patients Diagnosed with COVID-19. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 29–44). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_3
Bernardo Gois, F. N., Lobo Marques, J. A., & Fong, S. J. (2023). Classification of COVID-19 CT Scans Using Convolutional Neural Networks and Transformers. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 79–97). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_6
Bernardo Gois, F. N., Lobo Marques, J. A., & Fong, S. J. (2023). TPOT Automated Machine Learning Approach for Multiple Diagnostic Classification of Lung Radiography and Feature Extraction. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 117–135). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_8
Caldas, W. L., do Vale Madeiro, J. P., Pedrosa, R. C., Gomes, J. P. P., Du, W., & Marques, J. A. L. (2023). Noise Detection and Classification in Chagasic ECG Signals Based on One-Dimensional Convolutional Neural Networks. In R. Lee (Ed.), Computer and Information Science (pp. 117–129). Springer International Publishing. https://doi.org/10.1007/978-3-031-12127-2_8
Cavalcante, C. H. L., Primo, P. E. O., Sales, C. A. F., Caldas, W. L., Silva, J. H. M., Souza, A. H., Marinho, E. S., Pedrosa, R. C., Marques, J. A. L., Santos, H. S., Madeiro, J. P. V., Cavalcante, C. H. L., Primo, P. E. O., Sales, C. A. F., Caldas, W. L., Silva, J. H. M., Souza, A. H., Marinho, E. S., Pedrosa, R. C., … Madeiro, J. P. V. (2023). Sudden cardiac death multiparametric classification system for Chagas heart disease’s patients based on clinical data and 24-hours ECG monitoring. Mathematical Biosciences and Engineering, 20(5), 9159–9178. https://doi.org/10.3934/mbe.2023402
dos Santos Silva, B. R., Cesar Cortez, P., Crosara Motta, P., & Lobo Marques, J. A. (2023). Covid-19 Detection Based on Chest X-Ray Images Using Multiple Transfer Learning CNN Models. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 45–63). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_4
dos Santos Silva, B. R., Cesar Cortez, P., Gomes Aguiar, R., Rodrigues Ribeiro, T., Pereira Teixeira, A., Bernardo Gois, F. N., & Lobo Marques, J. A. (2023). Lung Segmentation of Chest X-Rays Using Unet Convolutional Networks. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 15–28). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_2
dos Santos Silva, B. R., Cortez, P. C., da Silva Neto, M. G., & Lobo Marques, J. A. (2023). X-Ray Machine Learning Classification with VGG-16 for Feature Extraction. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 65–78). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_5
Gois, F. N. B., Marques, J. A. L., de Oliveira Dantas, A. B., Santos, M. C., Neto, J. V. S., de Macêdo, J. A. F., Du, W., & Li, Y. (2023). Malaria Blood Smears Object Detection Based on Convolutional DCGAN and CNN Deep Learning Architectures. In R. Lee (Ed.), Computer and Information Science (pp. 197–212). Springer International Publishing. https://doi.org/10.1007/978-3-031-12127-2_14
Lobo Marques, J. A., & Fong, S. J. (Eds.). (2023). Computerized Systems for Diagnosis and Treatment of COVID-19. Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1
Lobo Marques, J. A., & Fong, S. J. (2023). Technology Developments to Face the COVID-19 Pandemic: Advances, Challenges, and Trends. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 1–13). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_1
Lobo Marques, J. A., Macedo, D. S., Motta, P., dos Santos Silva, B. R., Carvalho, F. H. C., Kehdi, R. C., Cavalcante, L. R. L., da Silva Viana, M., Lós, D., & Fiorenza, N. G. (2023). Exploratory Data Analysis on Clinical and Emotional Parameters of Pregnant Women with COVID-19 Symptoms. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 179–209). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_11
Motta, P. C., Cesar Cortez, P., & Lobo Marques, J. A. (2023). COVID-19 Classification Using CT Scans with Convolutional Neural Networks. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 99–116). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_7
Pordeus, D., Ribeiro, P., Zacarias, L., de Oliveira, A., Marques, J. A. L., Rodrigues, P. M., Leite, C., Neto, M. A., Peixoto, A. A., & do Vale Madeiro, J. P. (2023). Training Strategies for Covid-19 Severity Classification. In I. Rojas, O. Valenzuela, F. Rojas Ruiz, L. J. Herrera, & F. Ortuño (Eds.), Bioinformatics and Biomedical Engineering (pp. 514–527). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34953-9_40
Pordeus, D., Ribeiro, P., Zacarias, L., Paulo Madeiro, J., Lobo Marques, J. A., Miguel Rodrigues, P., Leite, C., Alves Neto, M., Aires Peixoto Jr, A., & de Oliveira, A. (2023). Classification of Severity of COVID-19 Patients Based on the Heart Rate Variability. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 155–177). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_10
Ribeiro, P., Pordeus, D., Zacarias, L., Leite, C., Alves Neto, M., Aires Peixoto Jr, A., de Oliveira, A., Paulo Madeiro, J., Lobo Marques, J. A., & Miguel Rodrigues, P. (2023). Evaluation of ECG Non-linear Features in Time-Frequency Domain for the Discrimination of COVID-19 Severity Stages. In J. A. Lobo Marques & S. J. Fong (Eds.), Computerized Systems for Diagnosis and Treatment of COVID-19 (pp. 137–154). Springer International Publishing. https://doi.org/10.1007/978-3-031-30788-1_9
Singh, P., Chaudhary, G., & Lobo Marques, J. A. (2023). Medical Information Extraction of Clinical Notes and Pictorial Visualisation of Electronic Medical Records Summary Interface. In Smart Distributed Embedded Systems for Healthcare Applications (pp. 29–40). CRC Press. https://www.routledge.com/Smart-Distributed-Embedded-Systems-for-Healthcare-Applications/Nagrath-Alzubi-Singla-Rodrigues-Verma/p/book/9781032183473
Yan, K., Li, T., Marques, J. A. L., Gao, J., Fong, S. J., Yan, K., Li, T., Marques, J. A. L., Gao, J., & Fong, S. J. (2023). A review on multimodal machine learning in medical diagnostics. Mathematical Biosciences and Engineering, 20(5), 8708–8726. https://doi.org/10.3934/mbe.2023382
ENSURE HEALTHY LIVES AND PROMOTE WELL-BEING FOR ALL AT ALL AGES
MENTAL-HEALTH EDUCATION
Mental Health and well-being are essential for a sustainable society. In the 2023-2024 academic year, 8.43% of our students graduated with degrees in the field of Psychology, equipped to enhance the mental health and well-being of their communities.
POLICIES AND SUPPORT SERVICES
USJ is a smoke-free campus as smoking is not allowed on campus. This is in compliance with the Macao Regime for Prevention and Control of Tobacco Use. The use of tobacco products is prohibited in enclosed buildings and facilities, as well as during events, both indoors and outdoors. Under the Alcohol and Illegal Substances Policy, USJ is committed to maintaining an environment that is free from substance abuse.
COLLABORATIONS
Partnerships are important in making progress on the Sustainable Development Goals (SDGs). USJ partners with the Macao government and other organisations to enhance the health of Macao’s population.
In the 2023-2024 academic year, USJ promoted good health and well-being through several initiatives. One of the initiatives is the USJ Blood Drive 2024, an annual event that encourages the USJ community to contribute to health and wellness. Additionally, USJ joined the GBA Physical Education and Sport Development Alliance, which focuses on enhancing physical education and sports development. Furthermore, USJ collaborated with a local enterprise, Macau Konghon Biomedical Technology Development Group Co. Ltd, to establish a Joint Research Institute, which aims at advancing research and development in biomedical technology to successfully tackle the community’s health needs.
HEALTH SERVICE
We provide mental health support to the community at a reduced rate through our counselling services.These services also provide referrals for sexual health issues to the appropriate health services. We also promote physical health through our sports facilities shared with a local secondary school.